Pump Formulas

Pressure (PSI)	$=\frac{\text { Head (Feet) } \times \text { Specific Gravity }}{2.31}$
Head (Feet)	$=\frac{\text { Pressure (PSI) } \times 2.3}{\text { Specific Gravity }}$
Vacuum (Inches of Mercury)	$=$ Dynamic Suction Lift (Feet) $\times .883 \times$ Specific Gravity
Horsepower (Water)	$=\frac{\text { GPM } \times \text { Head (Feet) } \times \text { Specific Gravity }}{3960 \times \text { Pump Efficiency }}$
Efficiency (Pump)	$=\frac{\text { Horsepower (Water) } \times 100 \%}{\text { Horsepower (Brake) }}$
NPSH	
(Available)	

Affinity Laws: Effect of change of speed or impeller diameter on centrifugal pumps.

	GPM Capacity	Ft. Head	BHP
Impeller Diameter Change	$Q_{2}=\frac{D_{2}}{D_{1}} Q_{1}$	$H_{2}=\left(\frac{D_{2}}{D_{1}}\right)^{2} H_{1}$	$P_{2}=\left(\frac{D_{2}}{D_{1}}\right)^{3} P_{1}$
Speed Change	$Q_{2}=\frac{R P M_{2}}{R P M_{1}} Q_{1}$	$H_{2}=\left(\frac{R P M_{2}}{R P M_{1}}\right)^{2} H_{1}$	$P_{2}=\left(\frac{R P M_{2}}{R P M_{1}}\right)^{3} P_{1}$
Where $Q=$ GPM, $H=$ Head, $P=$ BHP, $D=$ Impeller Dia., RPM $=$ Pump Speed			

