Reduced Voltage and Full Voltage Full-Voltage, "across the line" starting is the least expensive way to start a motor, and all motors can withstand full-voltage starting. However, *reduced-voltage* starting is necessary when a power company limits the amount of current drawn from its lines or when the driven system requires a low starting torque to cushion the application of power to the load. | Type of
Starter | Voltage
at Motor | Line
Current | Starting
Torque | Advantages | Limitations | |-----------------------|---------------------|-----------------|--------------------|---|---| | Full Voltage | 100% | 100% | 100% | Lowest costLess maintenanceHighest starting torque | Starting inrush current may exceed limits of electrical distribution system Starting torque may be too high for the application | | Auto
Transformer | 80
65
50 | 64
42
25 | 64
42
25 | Provides most torque per ampere of line current Taps on auto transformer permit adjustment of starting voltage Suitable for long starting periods Closed transition starting | In lower Hp rating, is most expensive design Heavy, physically largest type Low power factor Most complex of reduced voltage starters because proper sequencing of energization must be maintained | | Primary
Resistance | 80 | 65 | 42 | Lease complex method to obtain
reduced voltage starting
characteristics on low capacity | Additional power loss in resistors compared
to other types of starters Low torque efficiency (decreases as voltage | | | | | | systems because interlocking of contactors is unnecessary Smoothest acceleration of electromechanical types Improves starting power factor because voltage current lag is shortened by putting a resistance in series with the motor Less expensive than auto transformer starter in lower Hp ratings | is decreased) Starting characteristics not easily adjusted after manufacture Duty cycle may be limited by resistor rating High initial inrush current | |-----------------|--------|--------|--------|--|--| | Part
Winding | 100 | 65 | 42 | Starter less expensive than other types of reduced voltage control Closed circuit transition Most dual voltage motors can be started part winding on lower of two voltages Control smaller than other types | Torque efficiency usually poor for 3600 RPM motors Possibility of motor not fully accelerating due to torque dips Unsuitable for high inertia, long standing loads Requires special motor design for voltages other than 230V | | Wye Delta | 100 | 33 | 33 | Low torque efficiency No torque dips or unusual winding
stresses occur as in part winding
starting | Requires special motor design Starting torque is low Usually not suitable for high inertia loads Control more complex than many other starter types | | Solid State | Adjust | Adjust | Adjust | Includes constant current, ramped current, or tachometer type starting | Specialized maintenance required Shorting contactor is required for NEMA 4 | - Adjustable current limit and starting time - Increased duty cycle compared to electromechanical types - Power factor controller and line voltage limiting included - Multiple adjustable point over wide range - Smoothest acceleration - and 12 enclosure - Ventilation required - Higher priced - Isolation contactor may be required